Generic ILP-based approaches for time-multiplexed FPGA partitioning
نویسندگان
چکیده
Due to the precedence constraints among vertices, the partitioning problem for time-multiplexed field-programmable gate arrays (TMFPGAs) is different from the traditional one. In this paper, we first derive logic formulations for the precedence-constrained partitioning problems and then transform the formulations into integer linear programs (ILPs). The ILPs can handle the precedence constraints and minimize cut sizes simultaneously. To enhance performance, we also propose a clustering method to reduce the problem size. Experimental results based on the Xilinx TMFPGA architecture show that our approach outperforms the list-scheduling (List), the network-flow-based (FBB-m) (Liu and Wong, 1998), and the probability-based (PAT) (Chao, 1999) methods by respective average improvements of 46.6%, 32.3%, and 21.5% in cut sizes. Our approach is practical and scales well to larger problems; the empirical runtime grows close to linearly in the circuit size. More importantly, our approach is very flexible and can readily extend to the partitioning problems with various objectives and constraints, which makes the ILP formulations superior alternatives to the TMFPGA partitioning problems.
منابع مشابه
Generic ILP-Based Approaches for Dynamically Reconfigurable FPGA Partitioning
Due to the precedence constraints among vertices, the partitioning problem for dynamically reconfigurable FPGAs (DRFPGAs) is different from the traditional one. In this paper, we first derive logic formulations for the precedence-constrained partitioning problems, and then transform the formulations into integer linear programs (ILPs). The ILPs can handle the precedence constraints and minimize...
متن کاملSCATOMi: Scheduling Driven Circuit Partitioning Algorithm for Multiple FPGAs using Time-multiplexed, Off-chip, Multicasting Interconnection Architecture
FPGA-based logic emulator with large gate capacity generally comprises a large number of FPGAs connected in mesh or crossbar topology. However, gate utilization of FPGAs and speed of emulation are limited by the number of signal pins among FPGAs and the interconnection architecture of the logic emulator. The time-multiplexing of interconnection wires is required for multi-FPGA system incorporat...
متن کاملSignal Scheduling Driven Circuit Partitioning for Multiple FPGAs with Time-multiplexed Interconnection
FPGA-based logic emulator with large gate capacity generally comprises a large number of FPGAs. However, gate utilization of FPGAs and speed of emulation are limited by the number of signal pins among FPGAs and the interconnection architecture of the logic emulator. The time-multiplexing of interconnection wires is required for multi-FPGA system incorporating several stateof-the-art FPGAs. This...
متن کاملScheduling driven circuit partitioning algorithm for multiple FPGAs using time-multiplexed, off-chip, multi-casting interconnection architecture
The gate utilization of FPGAs and speed of emulation in multi-FPGA system are limited by the interconnection architecture and the number of pins. The time-multiplexing of interconnection wires is required for multi-FPGA systems incorporating several state-of-the-art FPGAs. This article proposes a circuit partitioning algorithm called SCheduling driven Algorithm for TOMi (SCATOMi) for multi-FPGA...
متن کاملPerformance Driven Inter-FPGA Synchronization Algorithm for Multi-FPGA Simulation Accelerator with Event Time-multiplexing Bus
Simulation is the most viable solution for the functional verification of SoC. The acceleration of simulation with multi-FPGA is a promising method to comply with the increasing complexity and large gate capacity of SoC. The most time-consuming factor of multi-FPGA simulation accelerator is synchronization time between simulator and multi-FPGA system. Time-multiplexing of interconnection wires ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. on CAD of Integrated Circuits and Systems
دوره 20 شماره
صفحات -
تاریخ انتشار 2001